Anal. Calcd. for $C_{24}H_{34}O_4$: C, 74.58; H, 8.87; O, 16.55. Found: C, 74.28; H, 8.89; O, 17.04.

The above enol ether X1II (1.0 g.) in 25 cc. of dioxane was added to 0.5 g. of calcium in 250 cc. of liquid ammonia and after stirring for 30 min., 4.0 g. of ammonium chloride was added and the product isolated in the usual manner.

After heating under reflux for 1 hr. with 5 cc. of concd. hydrochloric acid, 10 cc. of water and 25 cc. of methanol, **19-norprogesterone** (VIII) (0.27 g., m.p. 140–142°) was obtained after passage through a short column of alumina and recrystallization from acetone-hexane.

Apdo, Postal 2679, Mexico, D. F.

[Contribution from the Sloan-Kettering Institute for Cancer Research and the Division of Pure Chemistry of the National Research Council of Canada]¹

The Infrared Spectra of Hydroxysteroids below 1350 Cm.⁻¹

By R. Norman Jones and Glyn Roberts

RECEIVED JUNE 17, 1958

Characteristic absorption bands in the range 1350-650 cm.⁻¹ are reported for steroids hydroxylated at C(3), C(17) and C(20). The bands are observed in the monohydroxy compounds and in steroids containing additional hydroxy, acetoxy and ketonic groups, provided the functional groups are well separated. The general implications of these and similar bands in the spectra of ketones and acetates also are considered.

In preceding papers^{2,3} it has been shown that many of the prominent bands occurring between 1350 and 650 cm.⁻¹ in the infrared spectra of steroid ketones and acetates depend specifically on the position and stereochemical arrangement of the functional group. Where the steroid contains two or more functional groups it is often possible to distinguish bands characteristic of each group. This applies most generally where the functional groups are well separated so that interaction effects are reduced. Examples have been given where one functional group is at C(3) and the other at C(17) or C(20).

The spectra of a large number of steroid alcohols have now been surveyed in a similar fashion, and for these compounds also many of the infrared absorption bands in the 1350–650 cm.⁻¹ range are observed to fall within narrow frequency ranges for steroids containing the same hydroxy substituent.

Experimental Methods and Results

The spectra were measured on Perkin-Elmer model 112 and model 21 spectrometers using sodium chloride prisms. The bands common to the various compounds of the same type are listed in Table I and the frequency ranges of the bands common to the compounds of the same type are summarized in Table 11. A representative spectrum of each type of steroid alcohol is illustrated in Figs. 1-11. The common bands are cross-referenced between figures and tables by the letters A, B, etc., but it must be emphasized that these letters are assigned for identification purposes only, and no relationship is implied between bands carrying the same letter on different figures. The bands are classified in Tables I and 11 into categories

The bands are classified in Tables I and 11 into categories 1, 11 and 111. The basis of this classification was discussed in connection with ketone spectra.² Category I bands provide the main functional group identification; category 11 bands usually stand out in the spectra and are useful for secondary confirmation of the structure. The category 11I bands are generally weaker and tend to be obscured by other absorption in the spectra of steroids containing more than one functional group.

Most of the spectra were measured in carbon disulfide solution, but, because of the low solubility of many hydroxy steroids in this solvent, data for chloroform solutions at 1 mm. path length and for potassium bromide dispersions also are included in Table I. The spectra of some hydroxysteroids in potassium bromide disks have been shown to be sensitive to the conditions under which the disk is prepared⁴; therefore the frequency ranges given in Table II are based only on measurements in carbon disulfide solution.

The majority of the spectra discussed in this paper have been published in an atlas^{5,6} and in the right hand column of Table I references are given to the corresponding atlas chart numbers. In some instances the band positions given in Table I are taken from measurements made with the model 112 spectrometer under higher resolution than the curves published in the atlas; this accounts for small frequency differences of the order of ± 3 cm.⁻¹ between the band positions listed in Table I and those which would be interpolated from the atlas charts for the same compounds.

Discussion

3-Hydroxysteroids.—The most prominent band in the spectra of 3-hydroxysteroids occurs between 1056 and 999 cm.⁻¹. This band is outstandingly intense with $\epsilon_{\max}^{(a)}$ in the range 160–220. The corresponding bands in steroids hydroxylated at C(17) or C(20) have $\epsilon_{\max}^{(a)}$ in the range 60–120.

This band is presumed to involve principally a C-O stretching motion, and, in accordance with this, it is observed that the band position is affected only slightly by replacement of the hydroxy hydrogen atom with deuterium.⁷ The position of the band within the range depends on the stereochemistry at C(3) and C(5).⁸⁻¹⁰ The ranges previously assigned to this band in the various conformational isomers of 3-hydroxy steroids have been revised slightly as a result of the present investigation, and the new values are summarized in the second column of Table III.

3-Hydroxysteroids also exhibit several bands between 1015 and 890 cm.⁻¹; these, though weak, are usually sharp and can be useful as confirmatory

(4) G. Roberts, Anal. Chem., 29, 911 (1957).

(5) K. Dobriner, E. R. Katzenellenbogen and R. N. Jones, "Infrared Absorption Spectra of Steroids—An Atlas," Interscience Publishers, Inc., New York, N. Y., 1953.

(6) G. Roberts, B. Gallagher and R. N. Jones, "Infrared Absorption Spectra of Steroids—An Atlas, Volume II," Interscience Publishers, Inc., New York, N. Y., 1958.

(7) R. N. Jones, H. E. Hallam and J. Mateos, unpublished observation.

(8) A. R. H. Cole, R. N. Jones and K. Dobriner, THIS JOURNAL, 74, 5571 (1952).

(9) H. Rosenkrantz and L. Zablow, ibid., 75, 903 (1953).

(1D) H. Rosenkrautz and P. Skogstrom, ibid., 77, 2237 (1955).

⁽¹⁾ Published as Contribution No. 4919 from the Laboratories of the National Research Council of Canada, and No. XXXI in the series "Studies in Steroid Metabolism."

⁽²⁾ R. N. Jones, F. Herling and E. R. Katzenelleubogen, THIS JOURNAL, 77, 651 (1955).

⁽³⁾ R. N. Jones and F. Herling, ibid., 78, 1152 (1956).

TABLE 1.—CHARACTERISTIC GROUP FREQUENCIES IN THE

		4	7.	0	τ.	, CI	naracterist	ie bands
Compound	Solvent	н	ш	й	II II	11	III	11
						1.	3α -Hyd	lroxy-5α-
Androstan-3 α -ol (Fig. 1)	CS_2	1282	1242	1210	1162	1116	1070	1029
Allopregnan-3a-ol	CS_2	1283	1242	1216	1164	1112	1078	1031
Cholestan- 3α -ol	CS_2	1283°	1243	1216	1164	1120	1074	1033
Δ^{16} -Androsten- 3α -ol	CS_2	1284	1242	1215	1165	1121°	1065	1032
Androstan-3a-ol-17-one	CS2	1288'	$1240^{b,l}$	1212	1167^{t}	1121^{\prime}	1082	1027
Allopregnan-3 <i>a</i> -ol-20-one	CS_2	1285	1240	1211^{m}	1164	1118	1071^{m}	1029
Androstane- 3α , 17β -diol 17-acetate	CS_2	1288°	,	1215	1166	1116°	1074°	1032"
Allopregnane- 3α , 20α -diol 20-acetate	CS_2	n L	,	1220°	1163''	1116^{n}	n	1032
Androstane- 3α , $1/\beta$ -diol	CHCl ₃ /KBr [*]	~	1235	1215	1166	1118	1067'	1032'
Allopregnane- 3α , 20α -diel	KBr	1275^{*}	1239^{*}	1211^{*}	1157	1120	1066*	1037
		A	В	С	D	E	17	Ģ
		111	111	111	111	111		11
						11.	38-Hyd	roxy-5α-
Androstan-3 β -of (Fig. 2)	CS ₂	1295	1273	1250	1222	1210°	1163	1132
Allopregnan- 3β -ol	CS_2	1295*	1274	1250	1222	1214	1167	1132
Cholestan- 3β -ol	CS₂	1294	1270	1254	1223	1210	1168	1132
A ²² Stimmaton 241	CS_2	1292	1270	1252	1222	1210	1168	1130
Androsten 28 of 17 out	CS_2	1293	1270	1252	1222	1210	1168	1132
Allopregnon 28 of 20 one		1292	1272	1204	1219	1203	1170 ⁻	1128
Androstane 38 17 a dial	$CICI / ED^{i}$	1289	1270	1200	1220 h	1211	1170	1104
Androstane-38 178-diol	CHCl ₃ /KBr	1298 e	1275 e	1257	e	1202 e	1170 e	1100
Allopregnane-38 20 c-diol	CHCl ₃	1200	1970	1951	h	10108	11678	1132 h
		1300	14(0	1201		1414	1107	
		A	B	C		E	IF III	G
			••••			111	3a-Hvd	roxy-58-
Etiocholon-So-ol (Fig. 3)	CS.	1970	1961	1950	1916	1170	1100	1070
Pregnan-3a-01	C S2	1278	1201	1200	1210	1170	1108	1079
Coprostan-3a-ol	CS_2	1973	1204	1200	1216	1160	1108	1/082
A ¹⁶ -Etiocholen-Ba-ol	CS ₂	1275	1263	1250	1210	1167	1105	1087
Etiocholan-3a-ol-17-oue	CS_2	1270	1200 1265°	1252^{l}	$1215^{\circ,i}$	1168^{l}	1105	1081^{l}
Pregnan- 3α -ol-20-one	CS ₂	1280	1261	1200 h	1210	1175'4	1106	1088^{m}
17α -Pregnan- 3α -ol-20-one	CS₂	1280	1260	1255	1217^{m}	1165	1110	1089^{m}
Etiocholane- 3α , 17 β -diol 17-acetate	CS,	1-00 h	j j	/	1220°	1171	1109°	1088
Etiocholan- 3α , 17α -diol	CHCl ₃ /KBr ⁱ	1270	1260	$)_{i}$	1211	1162	1108	1087
Etiocholane- 3α , 17 β -diol	CHCl ₃ /KBr ⁱ	1280'	1265°."	$1244^{'}$	1210	1165°,"	1110 ^r	1088
Pregnane- 3α , 20α -diol	CHCl ₃ /KBr ⁱ	1279°	1262	1255	1217°	1171°	1113	109()°
		4	в	e	D	P	F	С
		111	Ш	й	ÎÏ	й	III	III
						1V.	3β-Hyd	roxy-5β-
Etiocholan-3 <i>β</i> -ol (l/ig. 4)	CS_2	1300	1270	1252	1218	1167	1135	1117
Pregnan-3β-ol	CS_2	1304	1276	1251	1220	1162	1138	1122
Coprostan-3β-ol	CS_2	1302	1276	1249	1215	1167	1134	1122
Δ^{16} -Etiocholen-3 β -ol	CS_2	1301	1274	1249	1219	1162	1138	1120
Etiocholan-3β-ol-17-one	CS_2	1305	1278°	1252^{t}	1218	1162	1134	1118^{o}
Pregnane- 3β , 17α -diol-20-one	CHCl ₃ /KBr ³	1304	n	1242	1225	1166	1142	1115
		A	В	С	D	16	P	G
Componini	Solvent	111	111	111	11	111	111	111
	<i></i>					V.	3β-Hydi	roxy-Δ°-
Δ° -Androsten-3 β -ol (Fig. 5)	CS ₂	1292	1268	1251	1217	1191	1172	1134
Δ° -Pregnen-3 β -01	CS ₂	1290	1272	1252	1216	1191	1172	1120
Δ·-Undesten-op-01 A5 Stigmaton 28 of		1280	1272	1208	1220	1100	1170	1100 1120
AT 17 - Dromono 28 178 464		1280	1209	1201	1212 1915	1169	1100	1120
$\Delta = 17 \text{ are regione-op}, 17 \text{ prove}$ $\Delta = 17 \text{ and rosten}, 38 \text{ or } 17 \text{ or } 19$		1200 1900 ^l	1265	1402 1954 ³	1210 1916	1166 1188	1170^{l}	1134
Δ		1400 1909 ^m	1200	1404 1956	1210 1217	1100 1101^{m}	1170^{m}	1134
38-Hydroxy-A ⁵ -cholenic acid methyl ester	CS_2	1292	1268	1252	1217	1180	 f	1131
Δ^{5} -Androstene-38.17 α -diol	CHCl	e e	e 6	c c	e 1	6	e	1137
Δ^{5} -Androstene-38.178-diol	CHCls	μ2 L	c	e	e	e	e	1137''
17-Ethynyl-Δ ⁵ -androstene-3β.17β-diol	CHCl ₃	0	ı	e	6	e,	6	1136
Δ^5 -Androstene-3 β , 16 α -diol	KBr	1287	h	1250	1220	1192	1173	1136

Infrared Spectra of Hydroxysteroids below 1350 cm. $^{-1}$

and categ H	ories ^a I	J	K		M	Ň	0	P	Q	R			:	Chart number in steroid atlas ^{5,6}
steroids	11		11											
1001	973	952	927	907	896	886	825	796	722	701				23
1001	973	957	932	907	896	882	827	796	728	701				335
1002	974	960	934	909	901°	886	826	796	728	701				38
1001	970	959	935	904	901	886	831	794	g	9				28
999	973	964^l	924	907	896	884	829^{l}	795	726	702				135
1001	973	962 <i>"</i> ^	928	907	895	882°	828	795	728	700				444
1004	h	962°	928	908	900	d	822	795	k	699				
1003	976	962^{p}	933^{p}	906^{p}	898	881	825	794	725^{p}	699				••
1001	975°	960'	925	906^{o}	900	885^r	823	795	h	h				65
1010 ^s	978°	954^{s}	h	909	901*	877*	832	797	724^{s}	69 6				369
H H	I I	J III	K II	L II	M II	N II	0	$_{\rm III}^{\rm P}$	$\stackrel{\rm Q}{_{\rm III}}$					
steroids	-													
1072	1038	1009	990	975	953	934	903	796	733					25
1078	1037	1011	990	976	954	936	901	798	738					337
1072	1036	1010	990	975	954	936	904	795	734					40
1075	1037	1011°	991	975	957	937	904	796	734					51
1074	1035	h .	991^{c}	g	957	935	908	795	d					59
1078°	1037	1009^{t}	989	974	953	935	901	796	734					137
1075^{m}	1037	1010^{c}	993	978	951^{m}	936	900	796	732					150
1075	1035	1010	994	979	954	936	898	801	727					67
1069^{r} 1070^{s}	1043	1012^{r} 1010 ^s	992 004*	977 078*	954 ^r 954%	622	906° 905°	700	* 736					360 74
1070 Н	1000 T	1010 T	554 K	970 L	304 · M	552 N	900	199	100					71
ii steroids	Î	1 I	ÎÌ	ĨĬ	II	111								
1063	1035	1009	952	912	898	834								31
1066	1038	1014	945	912	899	832								345
1066	1037	1012	946	913	900	831								49
1065	1038	1010	943	916	893	835								34
1060	1038	1007'	947	920	898	829'								144
1066	1035	1012	952°	908″	899									156
1066	1037	1012	952	908	899	838								452
1070°	1037°	1013	947°	914°	897°	833								
1063	1034	1012	949	912 01 2	899	841								364
1069	1032	1007*	946	917	898	830								<i>[</i>]
1067°	1030	1011*	940	914°	898°	829								11
steroius	э т	Ŧ	17	Ŧ			0	Ъ	0	D	C	T	**	
ш	111	i	m	ñ	11 M	III III	ш	II	ш	П	m	JII	п	
1074	1060	1030	998	983	960	949	932	908	879	832	782	732	700	33
1076	1062	1032	1000	986	960	950	928	913	881	830	788	740	703	37
1072	1060	1033	1000	984	959	950°	928	916	880	828	787	735	702	50
n	A	1033	1002	982	962	952°	925	906	880	834	<i>n</i>	745	703	
1075°	1065°	1033	1006'	980	959	946	930	910	879	825'	788	740	708'	146
1083**	1061	1031	1002	985	966	955°	931	912	880	830	~		704	180
1H 11	I III	J I	K 11	I, III	M I I	N II	$^{\rm O}_{\rm III}$	P II	Q II	R II	$^{\mathrm{S}}_{\mathrm{III}}$			
steroids	6													
1109	1079	1050	1019	1007	978	954	941	840	812	796	735			27
1111	1082	1049	1019	1007	982	953	935	84()	806	798	740			339
1109	1082	1049	1023	1007	986	954	936	840	804°	798	736			41
1105	1080°	1051	1022	1007	986	953	934	838	805°	800	740			58
1094°	1094*	1040	1020	1005	988	956	932	836	806	798	740 740			368
1110°	1084 h	1056*	1025	1006,	979	954	938	$^{841}_{d}$	805	798	742			139
11100	1000	1047	1021	1007	980	903	000	000	800	798	720			 99=
1102	1070	1004	1020	1008	980	998	933 e	రచర లాల	809 [.]	800 e	139			430 20
1100	1079	10507	1041	10100	971	900 0557	050	000 997	e	e	e			60 60
1105	1085	1046	1020	1006	900 986	900 955	909 ¢	007 835	e	e	e			09
1102	1083	1055	1026	1012	977	957	937	832	805	798				359

							(TA	ABLE 1.
		A III	В II	С 11	D I	E II	F III	G 15
						V1.	17β -Hyd	$lroxy-5\alpha$
Androstan-17 β -ol (Fig. 6) Androstan-17 β -ol-3-one Δ^1 -Androsten-17 β -ol-3-one Androstane- 3α ,17 β -diol	$\begin{array}{c} \mathrm{CS}_2 \ \mathrm{CS}_2 \ \mathrm{CS}_2 \ \mathrm{CS}_2 \ \mathrm{CS}_2 \ \mathrm{CHCl}_3/\mathrm{KBr}^i \end{array}$	1246 1250 [*] 1242 1253	1134 1135 ⁱ 1133 ^k 1135	$1085 \\ 1077 \\ 1082 \\ 1067^{7}$	1046 1059 1059 1049	$1025 \\ 1027 \\ 1024 \\ 1032^{q}$	1008° 1011 1011 1010^{\circ}	$984 \\981 \\982 \\985$
Androstane- 3β , 17 β -diol Androstane- 6β , 17 β -diol	CHCl ₃ CHCl ₃	e e	$\frac{1132^{7}}{1134}$	$\frac{1069^{9}}{1068}$	$\begin{array}{c} 1059 \\ 1046 \end{array}$	$\begin{array}{c} 1027 \\ 1025 \end{array}$	$\frac{1012^{q}}{1012}$	e 989
			$^{\mathrm{B}}_{111}$	с Ш	D III	E II	F II	
$\mathbf{V} = \{\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{$	00	1000	1010	1.1.1.1		VII.	17β -Hy	droxy-5β-
Etiocholan-17 β -ol-3-one Etiocholane-3 α ,17 β -diol	CS_2 CS_2 $CHCl_3/KBr^i$	$1288 \\ 1288^k \\ 1280^q$	1263 1264^{k} $1265^{\circ,q}$	$1246 \\ 1250^k \\ 1244^i$	$\frac{1103}{1167^k}$ 1167^q	$1135 \\ 1136 \\ 1132$	$\frac{1110}{1117}$ 1110^{q}	1057 1070 1069%
		${}^{\rm A}_{\rm III}$	B 111	C III	1) 1	к I	111 2	$_{\rm III}^{\rm G}$
					I	7111. Δ^4	-, ∆₅- and	$\Delta^{1,4}$ -17 β -
$\begin{array}{l} \Delta^4\text{-}\mathrm{Androsten-17\beta\text{-}ol-3\text{-}ome}\\ \Delta^{1,4}\text{-}\mathrm{Androstadiem-17\beta\text{-}ol-3\text{-}ome}\\ \Delta^5\text{-}\mathrm{Androstene-3\beta,17\beta\text{-}diol} \end{array}$	CS_2 CS_2 $CHCl_3$	1249 1249° e	$\frac{1130^k}{1132^c}$ $\frac{1132^r}{1137^r}$	1075 1075° 1077°,°	$1057 \\ 1057 \\ 1050^{q}$	$1022 \\ 1020 \\ 1028^{q}$	982 982 980 ⁴	957 ^k 957 ^k 955 ⁹
		A III	B II	с : (f	$_{ m H}^{ m D}$	E 111	27 111	с; П
						IX.	20a-Hye	$lroxy-5\alpha$ -
Allopregnan-20α-ol (Fig. 8) Allopregnan-20α-ol-3-one Allopregnane-3α,20α-diol 3-acetate Allopregnane-3α,20α-diol Allopregnane-3β,20α-diol	$\begin{array}{c} \mathrm{CS}_2\\ \mathrm{CS}_2\\ \mathrm{CS}_2\\ \mathrm{KBr}\\ \mathrm{CHCl}_3/\mathrm{KBr}^i\end{array}$	$1265 \\ 1270^{k} \\ f$ $1275^{4} \\ 1267$	1244 1239 f 1239 ^q	1210 1210 1212 1211 ⁹ 1212 ⁹	$ \begin{array}{r} 1174 \\ 1172^k \\ 1169 \\ 1167^n \end{array} $	1148 1152 ^k 1150 ^c 1150 ^c 1153	$ \begin{array}{r} 1112 \\ 1114^k \\ 1117^n \\ 1112 \\ 1119 \end{array} $	1099 1096 1097 1097 1098°
		A 111	В 111	$^{\rm C}_{\rm III}$	$_{ m III}^{ m D}$	к Ш	IF I I	G HI
						х.	20β-Hyd	iroxy-5a-
Allopregnan-20β-ol (Fig. 9) Allopregnan-20β-ol-3-one	CS_2 CS_2	$1272 \\ 1270^{k} \\ \Lambda \\ 111$	1244 1242 B H	$1172 \\ 1170^{k} \\ C \\ III$	$1158 \\ 1150^k \\ \stackrel{\mathrm{D}}{_{\mathrm{H}}}$	$1120 \\ 1126^{k} \\ E \\ 111$	1100 1098 F	1044^b 1044 C 111
	~~~					X1.	$20\alpha$ -Hy	droxy-58-
Pregnan-20 $\alpha$ -ol (Fig. 10) Pregnan-20 $\alpha$ -ol-3-one Pregnane-3 $\alpha$ ,20 $\alpha$ -diol	CS2 CS2 CHCl3/KBr ⁱ	$1268 \\ 1266^k \\ 1262$	1240 1244 ^k 1240	$\frac{1194}{1190^{\epsilon,k}}$ 1189	$\frac{1172}{1168^k}$ $1171^q$	1147 1147 ^k 1148	$1114 \\ 1112 \\ 1113^{\chi}$	1105 1102 ^k 1102
		A III	B III	с 111	D 1	2 	Б Н 902.11-	
Program 208 of (Fig. 11)	CP	1.270	1100	1147	1100	ДП, 1061	208-11YC 1029	1008-100
Pregnan-20β-ol-3-one	$CS_2$	1270 $1266^{k}$	$1168^{k}$	1147 $1148^{k}$	$100^{k}$	$1064 \\ 1060$	1032 1032	1008

^a For significance of categories see text. ^b Broad band. ^c Inflection. ^d The absorption in this region was not measured, tion obscured by the strong band associated with the unsaturated group. ^h Band not observed. ⁱ Figures for measure-associated with the 3-ketone group.² ⁱ Also associated with the 17-ketone group.² ^m Also associated with the 20-ketone with the 20-acetoxy group.³ ^q Also associated with the 3-hydroxy group (see this table, sections 1–V). ^r Also associated sections IX–X11).

evidence for the stereochemistry at C(3) and C(5). Some of these bands have been noted previously by Rosenkrantz and Skogstrom, and they are summarized in the columns to the right of Table III. The  $\Delta^{5}$ - $\beta\beta$ -hydroxysteroids also have characteristic bands between 850 and 790 cm.⁻¹ associated with the unsaturated linkage.¹¹

the unsaturated linkage.¹¹ **17-Hydroxysteroids**.—Our observations on steroids hydroxylated at C(17) are restricted to the 17 $\beta$ -hydroxy compounds of the C₁₉-series. The spectra of androstan-17 $\beta$ -ol and etiocholan-17 $\beta$ -ol are shown in Figs. 6 and 7. All the 17 $\beta$ -hydroxy compounds have a medium-strong band between 1059 and 1046 cm.⁻¹ (band D of Fig. 6 and band H (11) II. Hirschmann, This JOURNAL, **74**, 5357 (1952). of Fig. 7); this is probably a "C-O stretching band" and is useful for differentiating these compounds from those hydroxylated at C(3). The position of this band is not significantly different in compounds of the  $5\alpha$ - and  $5\beta$ -series, or in compounds containing a  $\Delta^4$ - or  $\Delta^5$ -bond. The spectra shown in Figs. 6 and 7 are readily distinguished, but the differences between them depend mainly on small frequency shifts and intensity changes and are not consistent when other functional groups are also present. The infrared spectrum therefore does not provide a satisfactory means for differentiating between  $17\beta$ -hydroxy compounds of the  $5\alpha$ - and  $5\beta$ -series.

20-Hydroxysteroids.—The spectra of the  $20\beta$ hydroxysteroids we have examined are dis-

6	1	2	5

Continu	(ued)									
H II	111 I	$_{111}^{J}$	K III							
steroids	3									
956	916	889	824							29
953	913	h .	828							128
$957^{k}$	917	h	827							
962ª	n	$885^{q}$	829ª							65
954 ⁴	<i>•</i>	889	6							360
960	920	890	Č.	_						004
H I	II	I I								
steroids	5									
1052	1030	985	950	918	898	830				35
1050	1028	985°	950	918	898	828 ^{b, k}				142
1054	1032 ^q	987	946 ^q	$917^{q}$	898 ^q	830ª				71
H	I									
Hvdrox	vsteroids									
915	828									130
920°	828									427
914	e									69
H II	I I	J 111	K III	L 1	M III	N III	0 111	P III	Q III	
steroids	5									
1067	1012	996°	976	957	929	906	889	875	725	<b>3</b> 41
1067	1010	999	h	954	930°	902	890	đ	727	441
1067	1016 ^{b,n}	988 ⁿ	977 <b>"</b>	956	928	906 ⁿ	888	877	$726^{n}$	
1066	1010 ^r	995°	$978^{q}$	954	920	901 ^q	888	877ª	$724^{q}$	369
1070	1010	994	978	$954^{\circ}$	$932^{q}$	902	888	872	h	74
H III	III	J III	K I	L TII	$_{ m III}^{ m M}$	N III	0 III	Р III		
steroids	5									
1030	1012	1002	965	9 <b>3</b> 6	908	876	830	722		343
1028	1010	998	962	932	904	882	826 ^b	722		442
н	I	î	ĸ	Ļ	M	N	0	P		
11 atoroid	11	1	111	1	111	111	111	111		
1000	1064	1000	007	059	010	90 <i>5</i>	070	795		249
1000	1004	1008	907	952	910	808	d 010	725		010
1091°. <b>*</b>	1072 1067 <b>°</b>	$1012 \\ 1011^{q}$	990°	958 958	$914^{q}$	898ª	875	120 h		
H	I	J	K		M					
steroids	5	***	***		141					
998	970	952	897	877	828 ^b					<b>3</b> 50
992	968	952	899	877	828 ^k					
	0.00		000	0	0-0					

• The absorption in this region was obscured by the solvent. ^f Absorption obscured by the strong ester band. ^o Absorpments made on KBr disks are italicized. ⁱ This band was not resolved in the curve shown in the 'Steroid Atlas.''^{5,6} ^k Also group.² ⁿ Also associated with the 3-acetoxy group.³ ^o Also associated with the 17-acetoxy group.³ ^p Also associated with the 17-hydroxy group (see this table, sections V1-VIII). ^e Also associated with the 20-hydroxy group (see this table,

tinguished by the medium-strong band at 1100-1090 cm.⁻¹; these show predominantly in the spectra of the mono-alcohols (band F of Fig. 9 and band D of Fig. 11). The  $20\alpha$ -hydroxy steroids have no comparable band in this part of the spectrum and their strongest band appears at 1016-1008 cm.⁻¹ (band I of Fig. 8 and band J of Fig. 10). The  $20\alpha$ -hydroxysteroids of both the  $5\alpha$ - and  $5\beta$ series have a characteristic band at 957-952 cm.⁻¹ (band L of Figs. 8 and 10). The  $20\beta$ -hydroxysteroids of the  $5\alpha$ -series have a strong band at 965-962 cm.⁻¹ (band K of Fig. 9), but in the  $5\beta$ -series this band is not so prominent (band I of Fig. 11). These differences in the spectra of  $20\alpha$ - and  $20\beta$ -hyddroxysteroids between 970 and 950 cm. ⁻¹ have been noted also by Wiggins and Klyne.¹²

No systematic differences are observed between the spectra of  $20\alpha$ -hydroxysteroids of the  $5\alpha$ - and  $5\beta$ -series and the situation is similar to that of the  $17\beta$ -hydroxy compounds discussed above. The spectra of the  $20\beta$ -hydroxysteroids of the  $5\alpha$ - and  $5\beta$ -series show more pronounced differences, notably between 1050 and 900 cm.⁻¹ where the  $5\beta$ -compound shows a series of sharp peaks (bands F-H, J, K of Fig. 11). The spectra of the  $20\beta$ -hydroxysteroids therefore appear to be more sensitive to the stereochemistry at C(5) than do either the

(12) H. S. Wiggins and W. Klyne, Chemistry & Industry, 1448 (1955).

		Tabi	εII		
Summ ₂	ary of Hydro:	XYSTEI QUEN	ROID	CHARACTERISTIC	Fre-
Band	Frequency range, cm. ⁻¹	Cate- gory ^a	Baud	Frequency range, cm. ~1	Cate- gory ^a
	$3\alpha$ -Hydroxy- $5\alpha$			$3\beta$ -Hydroxy- $5\alpha$	
А	1288 - 1282	II1	А	1295-1289	111
В	1243 - 1240	111	в	1276-1270	111
С	1220 - 1210	11	С	1256 - 1250	I11
D	1167 - 1162	I1	D	1223-1219	111
E	1121-1112	11	E	1214 - 1203	TII
12	1082 - 1065	11I	F	1170-1163	II
G	1033 - 1027	II	G	1134-1128	11
Н	1004-999	1	н	1078 - 1072	I1
1	976-970	11	1	1038-1035	Ι
J	962 - 952	11	J	1011-1009	I11
K	935 - 927	11	ĸ	993-989	II
L	909-904	11	L	978-976	1I
М	901 - 895	III	$\mathbf{M}$	957-951	11
N	886-881	II1	N	937-934	I1
0	831822	I11	0	908-900	111
Р	796 - 794	111	P	798-795	T11
Q	728-722	111	0	738-732	11I
R	702 - 699	1II	č		
	3a-Hydroxy-58			38-Hydroxy-58	
А	1282-1273	111	Δ	1305-1300	111
B	1265-1260	111	B	1278-1270	111
ĉ	1256 - 1250	111	C C	1252 - 1249	11
Ď	1200 - 1200 1220 - 1215	111	С П	1202 1215 1220-1215	11
F	1175 - 1165	TT	F	1280 1210 1167 - 1162	11
F	1110-1105	111	л. Э	1138-1134	TIT
G	1089-1079	TTT	â	1100 1101 1122 - 1117	111
н	1070-1060	11	н	1076 - 1072	111
ī	1038-1035	Ť	1	1062-1060	111
Ť	1014 - 1007	11	T	1032-1030	T
ĸ	952-943	11	ĸ	1006-998	111
ĩ.	920-908	11	τ.	986-980	11
ñ	900-893	11	M	962-959	11
N	838-829		N	952-946	Π
	000 010		õ	932-925	TII
	178-Hydroxy-5a		P	916-908	II
А	1250-1242	111	Ô	881-879	111
в	1135-1133	11	R	834-825	111
č	1086-1077	II	ŝ	788-782	III
Ď	1059-1046	T	Ť	745-732	111
E	1027 - 1024	11	$\bar{\mathbf{u}}$	708-700	III
F	1011-1008	111			
G	984-981	11		3β-Hvdroxv-∆⁵	
Н	957 - 953	II	А	1292 - 1285	III
I	917-913	111	в	1272 - 1265	111
J	889	I11	С	1258 - 1251	III
ĸ	828-824	I1I	D	1220-1212	II
			Е	1191-1188	I1I
	$17\beta$ -Hydroxy- $5\beta$		$\mathbf{F}$	1172 - 1165	III
Α	1288	1I1	G	1134 - 1126	I1I
в	1264 - 1263	I1I	Η	1111-1105	III
С	1250 - 1246	II1	Ι	1084 - 1079	III
D	1167 - 1163	II1	J	1056 - 1047	I
E	1136-1135	<b>I</b> 1	K	1025 - 1019	II
F	1117 - 1116	<b>I</b> 1	L	1008-1006	III
G	1070 - 1067	II	$\mathbf{M}$	986 - 978	III
Η	1052 - 1050	Ι	Ν	958-953	II
I	1030 - 1028	11	0	941 - 933	I1
J	985	11	Р	841-838	1I
K	950	II1	Q	812 - 805	II
L	918	111	R	800-796	11

$\mathbf{M}$	898	11I	S	742 - 735	III
Ν	830-828	III			
	20β-Hydroxy 5	a		$20\alpha$ -Hydroxy-5	α
Α	1272-1270	I11	А	1270 - 1265	I11
в	1244 - 1242	111	В	1244 - 1239	11
С	1172 - 1170	111	С	1212-1210	I1I
D	1158 - 1150	111	D	1174 - 1172	11
Е	1126-1120	ш	Е	1152 - 1148	111
F	1100 - 1098	11	$\mathbf{F}$	1117 - 1112	111
G	1044	111	G	1099-1096	11
Н	1030-1028	111	Н	1067	11
Ι	1012-1010	111	I	1016-1010	1
J	1002998	111	Ţ	999-988	I11
K	965 - 962	1	K	977-976	I1I
L	936-932	111	L	957 - 954	Ι
$\mathbf{M}$	908-904	III	М	930-928	II1
Ν	882876	111	N	906-902	111
0	830-826	111	()	890-888	I11
Р	722	111	Р	877-875	I11
			0	727 - 725	II1
	203-Hydroxy-5	в	Ŷ	20g-Hydroxy-5	3
А	1270-1266	111	А	1268-1266	111
в	1168-1166	III	в	1244 - 1240	11
С	1148-1147	111	С	1194 - 1190	III
D	1100 - 1099	1	D	1172 - 1168	11
E	1064 - 1060	I11	E	1147	II1
$\mathbf{F}$	1032	II	F	1114 - 1112	I11
G	1008-1000	111	G	1105-1102	111
Н	998-992	П	Н	1091-1088	11
1	970968	11	1	1072 - 1064	11
T	952	11I	ĩ	1012-1008	I
K	899-897	111	ĸ	990-987	111
L	877	111	L	956 - 952	Ι
$\mathbf{M}$	828	111	$\mathbf{M}$	916-910	11I
			Ν	898-895	111
$\Delta^4$ -, $\Delta^4$	5-, and $\Delta^{1.4}$ -17 $\beta$ -1	Iydroxy	0	876	I1I
Α	1249	ш	$\mathbf{P}$	725	I11
в	1132-1130	111			
С	1075	11I			
D	1057	1			
E	10221020	I			
$\mathbf{F}$	982	11I			
G	957	II1			
$\mathbf{H}$	920-915	111			
I	828	III			

^{*a*} For significance of categories see text.

## TABLE III

BANDS USEFUL FOR CHARACTERIZING THE STEREOCHEMIS-TRY OF 3-HYDROXYSTEROIDS

Structure	Main band, cm. ⁻¹	Additional bands, cm. ⁻¹
3a-Hydroxy-5a	1004- 999	976-970, 962-952, 935-927, 909-904
3β-Hydroxy-5α	1038-1035	993-989,978-976,957-951,937-934
$3\alpha$ -Hydroxy- $5\beta$	1038-1035	1014-1007, 952-943, 920-908, 900-893
38-Hydroxy-58	1033-1030	986-980, 962-959, 916-908
3β-Hydroxy-Δ⁵	1056-1047	1025-1019, 989-978, 958-953, 841-838,
		812-805, 800-796

 $20\alpha$ -hydroxy or  $17\beta$ -hydroxy compounds. This is notable in view of the large distance separating the hydroxy groups from the center of stereoisomeric change.

# General Conclusions

It is extremely unlikely that the complex spectra of such large molecules will ever be fully interpreted by the application of the conventional methods of





molecular vibrational analysis which were developed to deal with small polyatomic molecules. The characteristic frequencies tabulated for the various types of steroid alcohols, ketones and acetates in this and the two earlier papers^{2,3} were derived by a purely empirical method of surveying the spectra of a large number of steroids of related structure and selecting the bands that appeared consistently within narrow frequency ranges.

The steroids of the types considered in these papers can be regarded as derived from androstane and etiocholane by substitution in the ring system, or by addition of a side chain at C(17). In a like manner their spectra can be regarded as derived from the spectra of these hydrocarbons by a modu-

lating effect of the substituent. Expressed in these terms the problem is to determine the extent to which this modulation conforms to a standard pattern for a given type of substituent and also to determine the extent to which the modulation following the introduction of two or more substituents can be treated as the sum of the effects produced by each substituent acting separately. These concepts will be examined in more detail elsewhere.

The empirical band analyses reported in these papers enable us to look at steroid spectra in a little more rational manner than heretofore. It is clear that the various types of functional groups exercise their principal effects on different regions of the spec-





trum. In saturated 6-membered ring ketones and linear ketones the main effects of the substituents, which produce the bands of categories I and II, are observed in the 1300-1150 cm.⁻¹ region and also below 850 cm.⁻¹. The absorption in the higher frequency range probably involves skeletal vibration of the carbonyl group and of the carbon atoms attached directly to it; the weaker absorption below 850 cm.⁻¹ probably is associated with C-H bending vibrations of the  $\alpha$ -methylene groups.¹³ In 17ketosteroids the strong skeletal modes are displaced to the 1100–1000 cm.⁻¹ region. In steroid acetates the main absorption bands occur near 1240 cm.⁻¹

(13) R. N. Jones, B. Nolin and G. Roberts, THIS JOURNAL, 77, 6331 (1955).

and between 1100 and 1000 cm.⁻¹ and both probably involve stretching motions of the strongly polarized C-O bonds of the ester groups. The principal effect of the hydroxyl group also occurs between 1100 and 1000 cm.⁻¹ with pronounced secondary effects between 1000 and 900 cm.⁻¹. Where the functional groups are conjugated with ethylenic double bonds additional characteristic absorption appears below 900 cm.⁻¹ probably associated with the out-of-plane C-H deformation motions of the ethylenic hydrogen atoms.

The above generalization covers practically all of the prominent bands of ketones, alcohols and acetates that have been classified into categories I or II as being of practical use for purposes of struc-



Fig. 9.

tural identification. There remain in addition the numerous weaker bands that we have put into category III. These are observed persistently in the various types of substituted steroids; their intensity is more variable and for the most part they fall outside of the frequency ranges discussed in the preceding paragraph. Very probably some of these bands are associated with vibrations localized in the neighborhood of the functional groups and are essentially similar to the bands of categories I and II. It is notable, however, that some of these bands appear in the same spectral region of steroids containing different functional groups; thus, for example, many types of steroids exhibit absorption near 1170 cm.⁻¹ and in the ranges 980-950 and 910890 cm.⁻¹. These are the regions of strongest absorption below 1350 cm.⁻¹ in the spectra of androstane and etiocholane. They may be associated with vibrations that are characteristic of the ring system and persist in the spectra of the simpler mono- and disubstituted steroids because they arise from centers in the molecule that are remote from the positions of substitution with which we have been concerned in these papers, such as the angular methyl groups. The category III bands, together with other weak bands in the spectra of these compounds, are at present being examined from this point of view, and in a later paper we hope to discuss both their position and intensity in more detail.



Acknowledgments.—We wish to thank Dr. E. M. Augdahl and Dr. A. Nickon who synthesized a number of the compounds of the C(21) series. We also wish to acknowledge the technical assistance of Mrs. M. A. MacKenzie, Miss Beate Spiegel and Miss Doris Leskin who measured a number of the spectra supplementing those published in the two volumes of the atlas of steroid spectra.^{5,6} This investigation has been supported in part by a grant from the American Cancer Society, and a research grant (CY-3207) from the National Cancer Institute of the National Institutes of Health, United States Public Health Service.

NEW YORK, N. Y. Ottawa, Canada

[CONTRIBUTION FROM THE RESEARCH DEPARTMENT, R. J. REYNOLDS TOBACCO CO.]

## Flue-cured Tobacco. III. Solanachromene and $\alpha$ -Tocopherol

### By R. L. ROWLAND

**Received April 7, 1958** 

A high molecular weight phenol, solanachromene, has been isolated from aged flue-cured tobacco leaf in 0.05% of the dry weight of the leaf. Structural studies indicate that solanachromene is 2,7,8-trimethyl-6-hydroxy-2(4',8',12',16',20',24',-28',32',36'-nonamethyl-3',7',11',15',19',23',27',31',35'-heptatriacontanonenyl)-1,2-benzopyran (V,  $R_1 = R_2 = CH_3$ ,  $R_3 = H$ ).  $\alpha$ -Tocopherol was isolated from aged tobacco leaf in an amount 0.01-0.02% of the dry weight of the leaf.

In a study of the ether-soluble compounds extracted from aged flue-cured tobacco, we have recently reported the isolation of solanesol¹ and neophytadiene.² We now wish to report the isolation of two phenol fractions,  $\alpha$ -tocopherol and a high molecular weight unsaturated phenol to which we have given the name solanachromene.

(1) R. L. Rowland, P. H. Latimer and J. A. Giles, THIS JOURNAL, 78, 4680 (1956).

(2) R. L. Rowland, ibid., 79, 5007 (1957).

Isolation of these two compounds was accomplished by repeated chromatography using silicic acid.

Solanachromene, which constituted about 0.05% of the dry weight of the tobacco leaf, is a colorless oil which, after solidification at reduced temperature, melted at 16-19°. The infrared absorption is shown in Fig. 1. Absorption at 3  $\mu$  indicated the presence of a hydroxyl group, absorption at 6  $\mu$  indicated unconjugated double bonds of the type present in solanesol and absorption at 6.3  $\mu$  sug-